Sodium tungstate regulates food intake and body weight through activation of the hypothalamic leptin pathway.
نویسندگان
چکیده
AIMS Sodium tungstate is an anti-obesity drug targeting peripheral tissues. In vivo, sodium tungstate reduces body weight gain and food intake through increasing energy expenditure and lipid oxidation, but it also modulates hypothalamic gene expression when orally administered, raising the possibility of a direct effect of sodium tungstate on the central nervous system. METHODS Sodium tungstate was administered intraperitoneally (ip) to Wistar rats, and its levels were measured in cerebrospinal fluid through mass spectrometry. Body weight gain and food intake were monitored for 24 h after its administration in the third ventricle. Hypothalamic protein was obtained and subjected to western blot. In vitro, hypothalamic N29/4 cells were treated with 100 µM sodium tungstate or 1 nM leptin, and protein and neural gene expression were analysed. RESULTS Sodium tungstate crossed the blood-brain barrier, reaching a concentration of 1.31 ± 0.07 mg/l in cerebrospinal fluid 30 min after ip injection. When centrally administered, sodium tungstate decreased body weight gain and food intake and increased the phosphorylation state of the main kinases and proteins involved in leptin signalling. In vitro, sodium tungstate increased the phosphorylation of janus kinase-2 (JAK2) and extracellular signal-regulated kinase-1/2 (ERK1/2), but the activation of each kinase did not depend on each other. It regulated c-myc gene expression through the JAK2/STAT system and c-fos and AgRP (agouti-related peptide) gene expression through the ERK1/2 pathway simultaneously and independently. CONCLUSIONS Sodium tungstate increased the activity of several kinases involved in the leptin signalling system in an independent way, making it a suitable and promising candidate as a leptin-mimetic compound in order to manage obesity.
منابع مشابه
A functional leptin system is essential for sodium tungstate antiobesity action.
Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean anim...
متن کاملThe Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway.
The acute-phase protein orosomucoid (ORM) exhibits a variety of activities in vitro and in vivo, notably modulation of immunity and transportation of drugs. We found in this study that mice lacking ORM1 displayed aberrant energy homeostasis characterized by increased body weight and fat mass. Further investigation found that ORM, predominantly ORM1, is significantly elevated in sera, liver, and...
متن کاملHypothalamic Sirt1 Regulates Food Intake in a Rodent Model System
Sirt1 is an evolutionarily conserved NAD(+) dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. ...
متن کاملThe Effect of Maternal High-Fat Feeding on Energy Homeostasis in Stressed Adult Male Rat Offspring
Introduction: In the present study the effect of chronic maternal high-fat diet consumption on energy homeostasis and glucose metabolism in response to chronic stress was investigated in adult male rats. Materials and Methods: Female rats were divided into two groups of normal and high fat diets. Each group received their diet from 3 weeks before pregnancy until the end of lactation. At 8 weeks...
متن کاملAnti-Obesity Sodium Tungstate Treatment Triggers Axonal and Glial Plasticity in Hypothalamic Feeding Centers
OBJECTIVE This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. METHODS Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes, obesity & metabolism
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2011